Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Hypertension ; 81(3): 561-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354270

RESUMO

BACKGROUND: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS: A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS: We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS: Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.


Assuntos
Oxilipinas , Vasodilatação , Animais , Camundongos , Tecido Adiposo , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Oxilipinas/metabolismo , Potássio/metabolismo
2.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136669

RESUMO

ClC-7 is a ubiquitously expressed voltage-gated Cl-/H+ exchanger that critically contributes to lysosomal ion homeostasis. Together with its ß-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration. Interestingly, not all osteopetrosis-causing CLCN7 mutations from patients are associated with a loss of ion transport. Some rather result in an acceleration of voltage-dependent ClC-7 activation. Recently, a gain-of-function variant, ClC-7Y715C, that yields larger ion currents upon heterologous expression, was identified in two patients with neurodegeneration, organomegaly and albinism. However, neither the patients nor a mouse model that carried the equivalent mutation developed osteopetrosis, although expression of ClC-7Y715C induced the formation of enlarged intracellular vacuoles. Here, we investigated how, in transfected cells with mutant ClC-7, the substitution of this tyrosine impinged on the morphology and function of lysosomes. Combinations of the tyrosine mutation with mutations that either uncouple Cl- from H+ counter-transport or strongly diminish overall ion currents were used to show that increased ClC-7 Cl-/H+ exchange activity is required for the formation of enlarged vacuoles by membrane fusion. Degradation of endocytosed material was reduced in these compartments and resulted in an accumulation of lysosomal storage material. In cells expressing the ClC-7 gain-of-function mutant, autophagic clearance was largely impaired, resulting in a build-up of autophagic material.


Assuntos
Osteopetrose , Camundongos , Animais , Humanos , Osteopetrose/genética , Osteopetrose/metabolismo , Mutação com Ganho de Função , Mutação , Lisossomos/metabolismo , Tirosina/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
3.
Sci Adv ; 9(41): eadg4479, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831762

RESUMO

ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.


Assuntos
Canais de Cloreto , Doenças Neurodegenerativas , Humanos , Canais de Cloreto/química , Canais de Cloreto/genética , Transporte de Íons , Mutação , Doenças Neurodegenerativas/genética , Relação Estrutura-Atividade
4.
Cell Rep ; 42(8): 112926, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37543949

RESUMO

Volume-regulated anion channels (VRACs) are hexamers of LRRC8 proteins that are crucial for cell volume regulation. N termini (NTs) of the obligatory LRRC8A subunit modulate VRACs activation and ion selectivity, but the underlying mechanisms remain poorly understood. Here, we report a 2.8-Å cryo-electron microscopy structure of human LRRC8A that displays well-resolved NTs. Amino-terminal halves of NTs fold back into the pore and constrict the permeation path, thereby determining ion selectivity together with an extracellular selectivity filter with which it works in series. They also interact with pore-surrounding helices and support their compact arrangement. The C-terminal halves of NTs interact with intracellular loops that are crucial for channel activation. Molecular dynamics simulations indicate that low ionic strength increases NT mobility and expands the radial distance between pore-surrounding helices. Our work suggests an unusual pore architecture with two selectivity filters in series and a mechanism for VRAC activation by cell swelling.


Assuntos
Proteínas de Membrana , Humanos , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Ânions/metabolismo , Tamanho Celular , Concentração Osmolar
5.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37010469

RESUMO

Degradative organelles contain enzymes that function optimally at the acidic pH generated by the V-ATPase. The resulting transmembrane H+ gradient also energizes the secondary transport of several solutes, including Cl-. We report that Cl- influx, driven by the 2Cl-/H+ exchanger ClC-7, is necessary for the resolution of phagolysosomes formed by macrophages. Cl- transported via ClC-7 had been proposed to provide the counterions required for electrogenic H+ pumping. However, we found that deletion of ClC-7 had a negligible effect on phagosomal acidification. Instead, luminal Cl- was found to be required for activation of a wide range of phagosomal hydrolases including proteases, nucleases, and glycosidases. These findings argue that the primary role of ClC-7 is the accumulation of (phago)lysosomal Cl- and that the V-ATPases not only optimize the activity of degradative hydrolases by lowering the pH but, importantly, also play an indirect role in their activation by providing the driving force for accumulation of luminal Cl- that stimulates hydrolase activity allosterically.


Assuntos
Canais de Cloreto , Cloretos , Lisossomos , Fagossomos , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Lisossomos/metabolismo , Fagossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719378

RESUMO

Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health.


Assuntos
Proteínas de Transporte de Ânions , Sulfatos , Animais , Camundongos , Humanos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Transporte de Íons , Sulfatos/metabolismo , Homeostase , Camundongos Knockout , Antiporters/genética
7.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719741

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Nós Neurofibrosos/metabolismo , Potássio/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo
8.
J Am Soc Nephrol ; 33(8): 1528-1545, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777784

RESUMO

BACKGROUND: Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS: Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS: The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS: VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.


Assuntos
Cloretos , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Transporte Biológico , Cloretos/metabolismo , Membrana Celular/metabolismo , Néfrons/metabolismo
9.
Nat Cell Biol ; 24(6): 885-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35590106

RESUMO

Intracellular organelles change their size during trafficking and maturation. This requires the transport of ions and water across their membranes. Macropinocytosis, a ubiquitous form of endocytosis of particular importance for immune and cancer cells, generates large vacuoles that can be followed optically. Shrinkage of macrophage macropinosomes depends on TPC-mediated Na+ efflux and Cl- exit through unknown channels. Relieving osmotic pressure facilitates vesicle budding, positioning osmotic shrinkage upstream of vesicular sorting and trafficking. Here we identify the missing macrophage Cl- channel as the proton-activated Cl- channel ASOR/TMEM206. ASOR activation requires Na+-mediated depolarization and luminal acidification by redundant transporters including H+-ATPases and CLC 2Cl-/H+ exchangers. As corroborated by mathematical modelling, feedback loops requiring the steep voltage and pH dependencies of ASOR and CLCs render vacuole resolution resilient towards transporter copy numbers. TMEM206 disruption increased albumin-dependent survival of cancer cells. Our work suggests a function for the voltage and pH dependence of ASOR and CLCs, provides a comprehensive model for ion-transport-dependent vacuole maturation and reveals biological roles of ASOR.


Assuntos
Canais de Cloreto , Prótons , Ânions/metabolismo , Canais de Cloreto/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons
10.
Sci Adv ; 8(5): eabm3942, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108041

RESUMO

The proton-activated chloride channel ASOR (TMEM206/PAC) permeates anions across cellular membranes in response to acidification, thereby enhancing acid-induced cell death and regulating endocytosis. The molecular mechanisms of pH-dependent control are not understood, in part because structural information for an activated conformation of ASOR is lacking. Here, we reconstitute function from purified protein and present a 3.1-Å-resolution cryo-electron microscopy structure of human ASOR at acidic pH in an activated conformation. The work contextualizes a previous acidic pH structure as a desensitized conformation. Combined with electrophysiological studies and high-resolution structures of resting and desensitized states, the work reveals mechanisms of proton sensing and ion pore gating. Clusters of extracellular acidic residues function as pH sensors and coalesce when protonated. Ensuing conformational changes induce metamorphosis of transmembrane helices to fashion an ion conduction pathway unique to the activated conformation. The studies identify a new paradigm of channel gating in this ubiquitous ion channel.

11.
Nat Commun ; 12(1): 4801, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376649

RESUMO

Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


Assuntos
Potenciais de Ação/fisiologia , Canal de Potássio KCNQ3/fisiologia , Células Piramidais/fisiologia , Ritmo Teta/fisiologia , Animais , Hipocampo/citologia , Humanos , Canal de Potássio KCNQ3/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Optogenética/métodos
12.
Am J Hum Genet ; 108(8): 1450-1465, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34186028

RESUMO

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.


Assuntos
Canais de Cloreto/genética , Modelos Animais de Doenças , Canais Iônicos/fisiologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo
13.
J Biol Chem ; 296: 100074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187987

RESUMO

The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.


Assuntos
Encefalopatias/fisiopatologia , Canais de Cloreto/fisiologia , Doenças Testiculares/fisiopatologia , Animais , Astrócitos/metabolismo , Encefalopatias/metabolismo , Canais de Cloro CLC-2 , Moléculas de Adesão Celular Neurônio-Glia/genética , Proteínas de Ciclo Celular/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Homeostase , Humanos , Ativação do Canal Iônico , Ferro/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Oligodendroglia/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Doenças Testiculares/metabolismo
14.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217309

RESUMO

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Assuntos
Canais de Cloreto/genética , Mutação com Ganho de Função , Doenças Neurodegenerativas/genética , Alelos , Animais , Células CHO , Criança , Cricetulus , Eletrofisiologia , Endossomos/metabolismo , Feminino , Células HeLa , Heterozigoto , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Lactente , Transporte de Íons , Íons , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Macrolídeos/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Transfecção
15.
Commun Biol ; 3(1): 240, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415200

RESUMO

Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating.


Assuntos
Transporte de Íons/fisiologia , Transdução de Sinais , Microscopia Crioeletrônica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestrutura , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/ultraestrutura
16.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32277911

RESUMO

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Assuntos
Fibroblastos/imunologia , Interferons/imunologia , Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/imunologia , Canais de Ânion Dependentes de Voltagem/imunologia , Animais , Antivirais/imunologia , Antivirais/metabolismo , Efeito Espectador , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
17.
EMBO J ; 39(9): e103358, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32118314

RESUMO

CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl- concentration. Disruption of endosomal ClC-3 causes severe neurodegeneration. To assess the importance of ClC-3 Cl- /H+ exchange, we now generate Clcn3unc/unc mice in which ClC-3 is converted into a Cl- channel. Unlike Clcn3-/- mice, Clcn3unc/unc mice appear normal owing to compensation by ClC-4 with which ClC-3 forms heteromers. ClC-4 protein levels are strongly reduced in Clcn3-/- , but not in Clcn3unc/unc mice because ClC-3unc binds and stabilizes ClC-4 like wild-type ClC-3. Although mice lacking ClC-4 appear healthy, its absence in Clcn3unc/unc /Clcn4-/- mice entails even stronger neurodegeneration than observed in Clcn3-/- mice. A fraction of ClC-3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3-/- mice before neurodegeneration sets in. Both, Cl- /H+ -exchange activity and the stabilizing effect on ClC-4, are central to the biological function of ClC-3.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Endossomos/metabolismo , Doenças Neurodegenerativas/genética , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Camundongos , Mutação , Doenças Neurodegenerativas/metabolismo , Vesículas Sinápticas/metabolismo
18.
Nat Commun ; 10(1): 4678, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615979

RESUMO

Human primary aldosteronism (PA) can be caused by mutations in several ion channel genes but mouse models replicating this condition are lacking. We now show that almost all known PA-associated CLCN2 mutations markedly increase ClC-2 chloride currents and generate knock-in mice expressing a constitutively open ClC-2 Cl- channel as mouse model for PA. The Clcn2op allele strongly increases the chloride conductance of zona glomerulosa cells, provoking a strong depolarization and increasing cytoplasmic Ca2+ concentration. Clcn2op mice display typical features of human PA, including high serum aldosterone in the presence of low renin activity, marked hypertension and hypokalemia. These symptoms are more pronounced in homozygous Clcn2op/op than in heterozygous Clcn2+/op mice. This difference is attributed to the unexpected finding that only ~50 % of Clcn2+/op zona glomerulosa cells are depolarized. By reproducing essential features of human PA, Clcn2op mice are a valuable model to study the pathological mechanisms underlying this disease.


Assuntos
Canais de Cloreto/genética , Modelos Animais de Doenças , Hiperaldosteronismo/genética , Hipertensão/genética , Camundongos , Zona Glomerulosa/metabolismo , Animais , Canais de Cloro CLC-2 , Técnicas de Introdução de Genes , Heterozigoto , Homozigoto , Hiperaldosteronismo/complicações , Hipertensão/etiologia , Hipopotassemia/etiologia , Hipopotassemia/genética , Mutação
19.
Elife ; 82019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31318332

RESUMO

Acid-sensing ion channels have important functions in physiology and pathology, but the molecular composition of acid-activated chloride channels had remained unclear. We now used a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-rectifying anion channel PAORAC/ASOR. ASOR is formed by TMEM206 proteins which display two transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-changing mutations along the length of TM2 and at the end of TM1 suggest that these segments line ASOR's pore. While not belonging to a gene family, TMEM206 has orthologs in probably all vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature essential for ASOR's role in acid-induced cell death. TMEM206 defines a novel class of ion channels. Its identification will help to understand its physiological roles and the diverse ways by which anion-selective pores can be formed.


Assuntos
Membrana Celular/genética , Canais de Cloreto/genética , Cloretos/metabolismo , Ácidos/metabolismo , Animais , Ânions/metabolismo , Morte Celular/genética , Membrana Celular/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Genoma Humano/genética , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Prótons
20.
J Biol Chem ; 293(30): 11796-11808, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29880644

RESUMO

Spermatogenesis is a highly complex developmental process that occurs primarily in seminiferous tubules of the testes and requires additional maturation steps in the epididymis and beyond. Mutations in many different genes can lead to defective spermatozoa and hence to male infertility. Some of these genes encode for ion channels and transporters that play roles in various processes such as cellular ion homeostasis, signal transduction, sperm motility, and the acrosome reaction. Here we show that germ cell-specific, but not Sertoli cell-specific, disruption of Lrrc8a leads to abnormal sperm and male infertility in mice. LRRC8A (leucine-rich repeat containing 8A) is the only obligatory subunit of heteromeric volume-regulated anion channels (VRACs). Its ablation severely compromises cell volume regulation by completely abolishing the transport of anions and osmolytes through VRACs. Consistent with impaired volume regulation, the cytoplasm of late spermatids appeared swollen. These cells failed to properly reduce their cytoplasm during further development into spermatozoa and later displayed severely disorganized mitochondrial sheaths in the midpiece region, as well as angulated or coiled flagella. These changes, which progressed in severity on the way to the epididymis, resulted in dramatically reduced sperm motility. Our work shows that VRAC, probably through its role in cell volume regulation, is required in a cell-autonomous manner for proper sperm development and explains the male infertility of Lrrc8a-/- mice and the spontaneous mouse mutant ébouriffé.


Assuntos
Deleção de Genes , Canais Iônicos/genética , Proteínas de Membrana/genética , Espermátides/citologia , Espermatogênese , Animais , Ânions/metabolismo , Tamanho Celular , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Canais Iônicos/análise , Canais Iônicos/metabolismo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermátides/patologia , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA